
The Globalization of Manufacturing in the Digital Communications Era of the
21st Century: Innovation, Agility and the Virtual Enterprise

P roceedings of the Tenth International IF IP W G 5.2/5 .3 Conference
P R O L A M A T 98

IF IP P R O L A M A T 98 - Septem ber 9-10-11 & 12, 1998 Trento, Italy

83
A comparison of different HCI styles
in a KBSE system

S. G. Lazzeri
RECOM Technologies
NASA Ames Research Center, Mail-Stop 269-2,
Moffet Field, CA 94035-1000, USA, Phone: (650)-604-1105,
FAX: (650)-604-3594, email: olmeca@ptolemy.arc.nasa.gov

Abstract
There has been a sizable amount of research about the relative merits of different
styles of human computer interaction and information presentation. However, it
has not been possible to declare a definitive winner between graphical and text
based interfaces. This paper compares graphical and text based interfaces for
formal specifications in the context of Amphion, a generic knowledge based
software engineering system, which has been applied to the domain of solar system
kinematics. Preliminary observations favor the text based interface due to its ability
to present details, but the graphical interface has also advantages, such as the
compactness of its displays. The promising alternative of using a hybrid interface
and potential applications domains for Amphion, such as manufacturing and
education are discussed.

Keywords
human computer interaction, text based, graphical, visualization, KBSE, HCI

knowledge based, software engineering, formal specifications, client server

1 INTRODUCTION

Every interaction style provides particular advantages that may be more relevant
than those provided by other styles depending on the domain and characteristics of
the user population in which they are applied. This is supported by a vast body of
research in human computer interaction (HCI).

The Globalization of Manufacturing in the Digital Communications Era of the
21st Century: Innovation, Agility and the Virtual Enterprise

P roceedings of the Tenth International IF IP W G 5.2/5 .3 Conference
P R O L A M A T 98

IF IP P R O L A M A T 98 - Septem ber 9-10-11 & 12, 1998 Trento, Italy

 For example, Ladret (1991) uses text and graphics to represent Prolog programs,
Lazzeri (1996) studies visual and textual modes of advice in a chess learning
environment, and Salton (1994) proposes different hypertext structures to organize
large text files. This paper compares text based and graphical interfaces for formal
specifications in the context of the Amphion System (e.g. Lowry, 1994). It focuses
in those features that make the text based interface desirable as a substitute or a
complement to a graphical interface.
 The remainder of this paper is organized as follows: Section 2 describes the
Amphion System, Section 3 describes Amphion’s graphical interface, Section 4

discusses the motivation for developing alternative interfaces, Section 5 describes

the text based interface for Amphion, Section 6 presents a comparison between

both interfaces, and Section 7 presents the conclusions and future work.

2 THE AMPHION SYSTEM

Amphion is a generic Knowledge Based Software Engineering (KBSE) system that

targets scientific subroutine libraries. It implements a formal approach to domain

oriented software design environments, based on declarative domain theories,

formal specifications, and deductive program synthesis. A declarative domain

theory defines the semantics of a domain oriented specification language and its

relationships to implementation level subroutines. Deductive program synthesis

ensures that specifications are correctly implemented. Amphion has been

successfully applied to the domain of solar system kinematics. For this specific

implementation, the subroutines targeted are those of the NAIF libraries developed

at JPL (e.g. Rugaber, 1996).

2.1 The original Amphion version

Figure 1 shows the architecture for Amphion’s original version. That version,

written specifically for Unix based platforms, was organized into three main

components.

 The Domain Specific Subsystem contained all the domain specific knowledge

and interface objects that were necessary for the system to function. It was

necessary both to guide the user during the creation of a specification, and to

provide the Program Synthesis Subsystem with the necessary axioms to

successfully create the FORTRAN program from the original specification.

 The Specification Acquisition Subsystem allowed users to develop and reuse

formal specifications through a graphical user interface (GUI). This component

also included a specification checker that made sure the specifications were

correct.

 The Program Synthesis Subsystem was in charge of converting the user

specification into a FORTRAN program composed of subroutine calls to the NAIF

libraries. SNARK (e.g. Stickel, 1996) is a theorem prover used to translate the

user’s specification into a logical program, which was then translated into the final

FORTRAN program. The resulting program was made available to the user who

The Globalization of Manufacturing in the Digital Communications Era of the
21st Century: Innovation, Agility and the Virtual Enterprise

P roceedings of the Tenth International IF IP W G 5.2/5 .3 Conference
P R O L A M A T 98

IF IP P R O L A M A T 98 - Septem ber 9-10-11 & 12, 1998 Trento, Italy

could then compile and run it to produce either printed results or animations to
satisfy his/her requests.

Figure 1 Original Amphion’s architecture Figure 2 Amphion’s architecture.

 The main limitations of the original Amphion version were:

• It was only accessible from Unix based platforms.

• It handled only one user per Amphion process at a time.

• It was limited to one specific user interface.

• It required manual compilation/execution of the Amphion generated program.

• Domain theory development was primarily done by encoding the knowledge

directly as programming language (i.e. LISP) code.

2.2 Client Server Approach

Amphion’s capabilities have already been useful to NASA space scientists. It is

now desired to extend these capabilities to a wider audience. The current challenge

is to make these capabilities available to different domains and also for educational

purposes at different levels. In order to achieve this goal, a www based client

server development environment has been built. The objective of this environment

is to allow as wide an audience as possible to take advantage of Amphion’s

functionality. Figure 2 presents a diagram describing the architecture of the new

environment for the Amphion system. In that figure, several components can be

identified.

 The main improvement over the previous architecture is the addition of the

Server component, which acts as middleware, facilitating the interaction between a

number of clients and the different components of the Amphion system. Each

client encapsulates a simplified version of the Specification Acquisition Subsystem

as described in the original Amphion architecture. The Server can handle several

independent sessions at the same time, thus providing service to different users

simultaneously.

The Globalization of Manufacturing in the Digital Communications Era of the
21st Century: Innovation, Agility and the Virtual Enterprise

P roceedings of the Tenth International IF IP W G 5.2/5 .3 Conference
P R O L A M A T 98

IF IP P R O L A M A T 98 - Septem ber 9-10-11 & 12, 1998 Trento, Italy

 The Domain Specific Subsystem (e.g. domain theory) and the Program Synthesis
Subsystem (e.g. deductive component) remain mostly unchanged. However, a new
component, the execution component, now takes charge of automatically
compiling and running the program. Once the deductive component has translated
the user’s specification into a software program, the server turns the source code to

the execution component, which takes care of compiling and linking the program

to the appropriate libraries. The result of this process is an application program that

is displayed to the user.

 The interaction with the user is entirely handled through the clients and

application programs generated by the system. Therefore, the user can specify

problems and obtain results without having any knowledge of the low level details

of the NAIF libraries or FORTRAN programming. Currently there are two

different types of clients, one of them is graphical and the other is text based. They

both are written as Java applets so they can be invoked using a web browser.

However, since there is a well established protocol for communication between the

server and the clients, it would be relatively easy to develop other types of clients

that may be useful in different domains. The communication between server and

clients is carried out through TCP IP sockets, so it is also possible to create stand

alone clients that do not require a web browser to run.

 The application programs generated by the system are run in the server side and

displayed in the client machine using an X window, so it is necessary for the user

to have an X Windows Server on the client machine to see its results. Ideally, it

should be possible to develop clients with the specific purpose of displaying

results, to eliminate the need to have an X Windows Server in the client. One such

client is currently under development.

3 AMPHION’S GRAPHICAL INTERFACE

Amphion’s original version allowed users to develop and reuse formal

specifications through a graphical interface, which used graphical objects to

represent the different components of formal specifications, and arrows to

represent the relationships between components. This interface is particularly

effective for the creation of specifications. Figure 3 shows an example of a

specification as it is displayed by the graphical interface.

Figure 3 Program Cassini Visibility

The Globalization of Manufacturing in the Digital Communications Era of the
21st Century: Innovation, Agility and the Virtual Enterprise

P roceedings of the Tenth International IF IP W G 5.2/5 .3 Conference
P R O L A M A T 98

IF IP P R O L A M A T 98 - Septem ber 9-10-11 & 12, 1998 Trento, Italy

 This is a very good example to showcase the advantages of using a graphical
representation for formal specifications. In this example all the components of the
specification and their relationships can be clearly displayed. The circles are high
level components, called enclosures, which can be expanded to display more detail.
The rectangles are variables. The arrows represent relations between the different
objects, and the irregular polygons represent input and output representations of
variables. The output of this program is “BLOCK”, which tells whether or not a

signal sent from the spacecraft Cassini to Earth at the input time “ETCASS” is

blocked by the planet Saturn. The high level semantics of this specification can be

understood from Figure 3 even without a deep knowledge of the interface itself.

 Unfortunately, not all specifications can be captured with the same simplicity as

the Program Cassini visibility. The expanded version of the enclosure “Enclosure-

Blocked-Signal” in the same program presents the common problem of having to

present too many objects within a very limited space. As we can see in Figure 4, it

is much more difficult to understand the semantics of this enclosure than it was to

do it for the Program Cassini Visibility. The next section describes some of the

main problems we can find when using graphical representations for formal

specifications.

Figure 4 Enclosure Blocked Signal

4 MOTIVATION TO DEVELOP ALTERNATIVE INTERFACES

While the graphical interface handles small specifications well, there are a number

of problems that increase with the size of the specifications used, such as:

1. The difficulty to visualize specifications that contain a large number of

relationships between components because of the well known “spaghetti ball”

phenomenon. This problem is found almost every time a complex structure is

described graphically. For example, Ladret (1991) describes how it affects the

graphical representation of Prolog programs. Figure 4 presents a typical

example in the context of Amphion with so many intermingled arrows and

objects that it is hard to tell where each arrow starts and ends.

The Globalization of Manufacturing in the Digital Communications Era of the
21st Century: Innovation, Agility and the Virtual Enterprise

P roceedings of the Tenth International IF IP W G 5.2/5 .3 Conference
P R O L A M A T 98

IF IP P R O L A M A T 98 - Septem ber 9-10-11 & 12, 1998 Trento, Italy

2. The lack of standard graphical representations for objects in some domains
makes the graphical representations less than intuitive in some cases. Since the
objective of Amphion is to be a domain independent tool and there is no
universal graphical notation for all domains, the problem of designing the
icons to be used has to be solved in a case by case basis.

3. It is hard to see some of the details of the enclosures and its relationships from
the graphical representations. In Figure 3 for example, it is clear that the
enclosure “Enclosure-Blocked-Signal” has four links to elements that lay

outside of itself, but it is not clear what specific elements inside this enclosure

are connected to what external elements.

4. It is hard to hide unnecessary specification details. In Figure 4, it would be to

our advantage to remove some of the detail. However, it is difficult to do this

in a graphical representation without removing relevant information.

5 AMPHION’S TEXT BASED INTERFACE

In order to address these problems, a new, text based interface has been developed
as an alternative/complement to the existing graphical interface. The text based
interface avoids problems 1 (i.e. spaghetti ball) and 2 (i.e. lack of standard
graphical representations) by representing the information about objects and their
relationships in the form of natural language sentences. This representation makes
it easy for novice users to better understand the specifications. By presenting the
specification information organized in the form of outlines that can be selectively
expanded and collapsed, the user is given a high degree of control over the
information that is displayed at any given time. This capability minimizes
problems 3 (e.g. selective information display) and 4 (e.g. selective information
hiding) described before.
 The outline for each formal specification classifies its components into different
categories, such as inputs, outputs, constants, variables, and enclosures. More
detailed information about any component in each of the categories can be
obtained by expanding the components’ relationships. For example, it is possible to

expand the arguments used to compute a given component ‘c’, the components that

use ‘c’ as an argument, the components that are equated to ‘c’, or the enclosure ‘e’

that contains ‘c’.

 The repeated application of this expanding ability allows the user to traverse the

graph that represents the formal specification in any way. For example, it is

possible to trace the outputs of a given program all the way back to the inputs that

are required for its computation, going through all the intermediate values that need

to be computed in order to obtain the outputs. It is also possible to start from the

inputs and navigate towards the outputs by following the relationships that show

how the inputs are used to compute new values, and how these new values are used

to compute other new values until the outputs are produced. In general, the user

should be able to navigate from any component to any other component in the

specification by following the different relationships between components,

assuming the specification can be represented by a connected graph.

The Globalization of Manufacturing in the Digital Communications Era of the
21st Century: Innovation, Agility and the Virtual Enterprise

P roceedings of the Tenth International IF IP W G 5.2/5 .3 Conference
P R O L A M A T 98

IF IP P R O L A M A T 98 - Septem ber 9-10-11 & 12, 1998 Trento, Italy

 Besides providing the ability to freely navigate through the specification, the text
based interface can also provide specific views that correspond to particularly
relevant traversals of the abstract graph that represents a specification. For
example, the output to input traversal described before can be generated
automatically by the interface. Information about each component can be provided
at different levels, too. For example, it may include only the name of the
component, the function used to compute it, or the complete description of the
component, including its arguments. The complete descriptions can be either
expanded in place, or displayed in a separate auxiliary window.
 Figure 5 presents the text based display for the example Program-Cassini-
Visibility shown also in Figure 3 for the graphical interface. Each element is
represented by its name, which can be expanded to the full description of the
element. There are six symbols to the left of each element. These symbols stand for
different relations that can be requested from each element. The meaning of each
symbol may be slightly different depending on the type of element to which they
apply (e.g. either enclosure or simple element). Table 1 summarizes the meaning of
each symbol for each case.

TABLE 1 Meaning of expanding symbols for text based interface

Symbol \ Type Enclosure Simple Element

@ Display Enclosure Outline Display Arguments

= Unused Display Equalities

^ Unused Display Parents

$ Display Enclosing Enclosure Display Enclosing Enclosure

& Display Interface Display Hooks

+ Toggle Name/Description Toggle Name/Description

 Enclosure Outline is the high level outline defined for each enclosure. An outline
classifies the relevant elements of an enclosure into meaningful categories, namely
outputs, inputs, interface, constants, variables, photons, and enclosures.
 The arguments of a simple element ‘e’ are those simple elements whose values

are required in order to compute ‘e’. The equalities of an element ‘e’ are those

simple elements ‘e1’ for which there is an explicit equality relation between ‘e’ and

‘e1’. The parents of a simple element ‘e’ are those simple elements ‘s’ that require

the value of ‘e’ in order to compute their own value.

 The Enclosing Enclosure of a given element ‘e’ (e.g. either an enclosure or a

simple element) is the enclosure that directly contains ‘e’. For example, the

enclosure Enclosure-Blocked-Signal is the Enclosing Enclosure for element

The Globalization of Manufacturing in the Digital Communications Era of the
21st Century: Innovation, Agility and the Virtual Enterprise

P roceedings of the Tenth International IF IP W G 5.2/5 .3 Conference
P R O L A M A T 98

IF IP P R O L A M A T 98 - Septem ber 9-10-11 & 12, 1998 Trento, Italy

‘Destination-Point’, and the enclosure ‘Program-Cassini-Visibility’ encloses the

enclosure ‘Enclosure-Blocked-Signal’.

 The Interface of an enclosure ‘E’ refers to those simple elements ‘s’ directly

enclosed by ‘E’ that have at least one direct relationship (e.g. argument, parent,

equality) to an element that is not enclosed by ‘E’ in any way. The Hooks of a

simple element ‘s’ are those elements ‘h’ which have a direct relationship to ‘s’,

but which lay in a different enclosure than ‘s’. The ‘+’ symbol just toggles the id of

an element ‘e’ between its name and its full description.

 When any of the symbols described in Table 1 has been selected to expand the

corresponding relation, it is turned into a ‘-‘ symbol to indicate that it is already

expanded and cannot be expanded again.

 Figure 5 Program Cassini Visibility in Text Based Interface

 Figure 5 also illustrates the use of color coding in order to identify the different

enclosures, including the main program, in a specification. In this case the main

program ‘Program-Cassini-Visibility’ is coded in green as well as every simple

element that is directly enclosed by it. Similarly, ‘Enclosure-Geodetically-

Described-Point’ and its elements are coded in white, ‘Enclosure-Body-Saturn’ in

The Globalization of Manufacturing in the Digital Communications Era of the
21st Century: Innovation, Agility and the Virtual Enterprise

P roceedings of the Tenth International IF IP W G 5.2/5 .3 Conference
P R O L A M A T 98

IF IP P R O L A M A T 98 - Septem ber 9-10-11 & 12, 1998 Trento, Italy

yellow, ‘Enclosure-Blocked-Signal’ in magenta, and ‘Enclosure-Spacecraft-

Cassini’ in dark yellow. The expanding symbols are colored in the same way as the

element they refer to, except in the case of symbols which are disabled (e.g.

grayed). A grayed symbol means that no relations of the type specified by that

symbol are available for its corresponding element. In a gray scale version of this

paper, the coding is not so clear, but the enclosures should still be seen in different

shades of gray.

 To conclude this section, let us consider some of the potential applications of the

text based interface. Even though the text based interface has been explicitly

designed for Amphion structures, it provides a general framework that could be

used to visualize and navigate through different structures that involve different

types of components and relationships between those components. Structures that

could possibly be traversed by this interface include finite state diagrams, Petri

nets, and the organized results of a search engine. The approach used for the text

based interface can be seen as an extension of the outline and collapser/expander

programs commonly used to hierarchically browse file directories, with the

particularity that this text based interface can present and combine different

hierarchies over the same collection of elements.

6 INTERFACE COMPARISON

From figures 3 and 5, we can see that the text based interface provides more

detailed information than the graphical interface at the expense of a somewhat

lengthier representation. However, the ability of the text-based interface to expand

and collapse different parts of the representation makes the trade off favor the text

based interface.

 For example, from figure 5 we can tell that the element ‘Body-Saturn’ in

‘Enclosure-Body-Saturn’ equals the element ‘Blocking body’ in ‘Enclosure-

Blocked-signal’, and that the element ‘Spacecraft-Cassini’ in ‘Enclosure-

Spacecraft-Cassini’ has parents (e.g. is an argument to) ‘the position of the

spacecraft Spacecraft-Cassini’ and ‘the space-time location of Spacecraft-Cassini’

in the main program ‘Program-Cassini-Visibility’.

 On the other hand, we can at best get incomplete information from the graphical

representation. All we know is that there is a Spacecraft argument coming out of

‘Enclosure-Spacecraft-Cassini’, but we do not know which one (i.e. there could be

several Spacecraft definitions inside the enclosure). Similarly, we know there is an

equality between an element inside ‘Enclosure-Body-Saturn’ and another element

inside ‘Enclosure-Blocked-Signal’, but we do not know which ones. Even though it

could be possible to add all these details to the graphical representation, it would

hinder its compactness and simplicity, which are its best assets. Furthermore, this

additional information may produce other readability problems as those seen in

Figure 4.

 Figure 6 shows the text based representation for the enclosure presented in Figure

4 for the graphical interface. Here the readability advantages provided by the text

based interface are more clearly observed. The interface for this enclosure consists

of four simple elements, ‘Destination-Point’, ‘Source-Point’, ‘Blocking-Body’, and

The Globalization of Manufacturing in the Digital Communications Era of the
21st Century: Innovation, Agility and the Virtual Enterprise

P roceedings of the Tenth International IF IP W G 5.2/5 .3 Conference
P R O L A M A T 98

IF IP P R O L A M A T 98 - Septem ber 9-10-11 & 12, 1998 Trento, Italy

‘Ray-is-Blocked?’. Since the first 3 of these elements do not have any arguments, it

is safe to assume that they all get their values from their external hooks,

respectively ‘Point-on-Earth’, ‘the position of the spacecraft Spacecraft-Cassini’,

and ‘Body-Saturn’.

 Since ‘Ray-is-Blocked?’ does have arguments, it is safe to assume that, unlike

the other members of the interface, its value is used as an output to provide the

value for its hook ‘Blocked?’. All of this information can be easily extracted from

this representation. Furthermore, we can easily see that ‘Ray-is-Blocked?’ is true if

there is an intersection between the surface of the blocking body (e.g. Saturn) and

the ray from the source (e.g. Cassini) to the destination (e.g. Earth), and this

intersection lies between source (e.g. Cassini) and destination (e.g. Earth).

 This example shows that the text-based interface can provide several distinct

advantages over the graphical interface, such as better readability and easier access

to details. The next example presents a comparison using a simpler example, which

shows how the graphical interface has its virtues too.

 Let us now look at a simpler specification used to compute the distance between

Earth and Mars. This specification does not contain enclosures so it is more

amenable to be displayed with the graphical interface. Figures 7 and 8 present the

two alternative views. As we can see from these figures, both interfaces can display

very clearly the details of the specification. The lack of enclosures avoids many of

the complications encountered in the previous example. Since the graphical

interface gives a somewhat more compact representation, it would perhaps be more

appropriate for the display of this type of simpler specifications.

Figure 6 Enclosure Blocked Signal in Text Based Interface

The Globalization of Manufacturing in the Digital Communications Era of the
21st Century: Innovation, Agility and the Virtual Enterprise

P roceedings of the Tenth International IF IP W G 5.2/5 .3 Conference
P R O L A M A T 98

IF IP P R O L A M A T 98 - Septem ber 9-10-11 & 12, 1998 Trento, Italy

Figure 7 Earth-Mars-Distance graph Figure 8 Earth-Mars-Distance text

7 CONCLUSIONS AND FUTURE WORK

Even though a formal usability study has not yet been conducted, preliminary
results indicate that despite the readability advantages provided by the text based
interface, the graphical interface also provides advantages of its own, such as a
more compact way to present the specifications. Given these observations, we can
conclude that it is appropriate to use each interface under different circumstances.
The graphical interface is most appropriate when it is important to grasp the high-
level structure of the specification. The text based interface is best to provide
access to specification details.
 An alternative way to present this information is to simultaneously use the text
based and the graphical interface to display specification information. Since the
new implementation of Amphion is built upon a client server architecture, it is
possible to start a graphical and a text based client that communicate through the
server so that a given specification can be seen by both clients. Changes made in
one of the clients are automatically reflected in the other client. This approach is
promising, since it presents the user with the advantages of both representations.
 At this point there is a working version of the new Amphion architecture. This
new version addresses most of the problems described in Section 1. However, there
is still a lot of work to do. Extensive testing of the current prototypes in more
realistic settings will take place in the near future.
 Future work will focus on extensive testing of the different alternatives to the
representation and manipulation of formal specifications described earlier. Since
both the text based and the graphical clients will soon be available through the
worldwide web, it should be relatively easy to accumulate the necessary data for a
formal study.
 Current work includes the extension of both of the interfaces to go beyond the
creation of specifications into the creation and modification of the domain theory
itself. This would allow a domain expert to define new domain theories without
having to depend on a programmer to do the domain theory implementation.
 Given the constructive theorem proving technique used by Amphion in order to
construct the resulting programs, the correctness of these results with respect to the

The Globalization of Manufacturing in the Digital Communications Era of the
21st Century: Innovation, Agility and the Virtual Enterprise

P roceedings of the Tenth International IF IP W G 5.2/5 .3 Conference
P R O L A M A T 98

IF IP P R O L A M A T 98 - Septem ber 9-10-11 & 12, 1998 Trento, Italy

given specification is guaranteed, as long as the domain theory and the system
itself are also correct. These properties make it appealing to consider application
domains that go beyond software, such as the control of processes in industrial and
manufacturing settings. We can visualize Amphion converting an specification
describing the safety constraints for an industrial plant into a set of actions that
would keep the plant under these constraints throughout a period of time, or
creating a daily plan for a production line given the goals of the day.
 Research on collaborative construction of formal specifications using Amphion is
also being explored. This would allow researchers or students to come together
through time and space to build new applications with the assistance of Amphion.
 There are several ways we envision the system to be used for educational
purposes. First, instructors can use Amphion in order to generate supporting
materials for classroom or homework activities, such as animations or tabulations
that illustrate particular events. This would be particularly useful for professors
teaching elementary courses. Another way to take advantage of these materials is
to put together web sites that use those materials in order to present interactive
lessons with specific objectives. Advanced students may also use Amphion as a
learning environment, by directly interacting with the system in order to obtain
answers to problems of their own.

8 REFERENCES

Ladret D. and Rueher M. (1991) VLP: A visual logic programming language.
Journal of Visual Languages and Computing, 2, 2, 163-88.

Lazzeri S. and Heller R. (1996) An Intelligent Consultant System for Chess.
Computers & Education, 27, 3/4, 181-96.

Lowry, M., Philpot, A., Pressburger, T., and Underwood, I. (1994) Amphion:
Automatic Programming for Scientific Subroutine Libraries. 8th Intl. Symp. on
Methodologies for Intelligent Systems, Charlotte, North. 326-35.

Rugaber, S., Stirewalt, K., and Wills, L. (1996) Understanding Interleaved Code.
Automated Software Engineering, 3, 1/2, 47-76.

Salton, G., Allan, J., and Buckley, C. (1994) Automatic structuring and retrieval of
large text files. Communications of the ACM, 37, 2, 97-108.

Stickel, M., Waldinger, R., Lowry, M., Pressburger T., and Underwood, I. (1994)
Deductive Composition of Astronomical Software from Subroutine Libraries.
12th Conference on Automated Deduction, Nancy, France. 341-55.

9 BIOGRAPHY

Dr. Santos G. Lazzeri is a computer scientist for RECOM technologies, NASA
Ames Research Center group. He has been collaborating with Ames’ Automated

Software Engineering group since 1997. Dr. Lazzeri earned D.Sc., and MS degrees

in computer science, artificial intelligence, from The George Washington

University, (Washington, D.C., U.S.A.). He also has a Licenciatura in Computer

Systems Engineering from the Universidad de las Américas, (Puebla, México). His

research includes AI, HCI, CBR, Fuzzy Logic, Education, and Computer Chess.

